Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 56(10): 1395-1400, 2022 Oct 06.
Article in Chinese | MEDLINE | ID: covidwho-2090421

ABSTRACT

In the context of the global pandemic of COVID-19, the epidemic intensity, epidemic characteristics and infection risk of influenza have presented new features. COVID-19 and influenza have simultaneously emerged in many regions of the world. COVID-19 and influenza are similar in terms of transmission mode, clinical symptoms and other aspects. There are also similarities in the mechanism of influenza virus and novel coronavirus on cells. At the same time, it is feasible and significant to do a good job in the prevention and control of COVID-19 and influenza. This paper discusses the relevant strategies and measures for the joint prevention and control of influenza and novel coronavirus from the aspects of influenza vaccination to prevent co-infection, simultaneous vaccination of influenza vaccine and novel coronavirus vaccine, etc., and puts forward corresponding thoughts and suggestions, in order to provide scientific support for the formulation of strategies on seasonal influenza vaccine and novel coronavirus vaccination.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , COVID-19 Vaccines , COVID-19/prevention & control , Seasons , Vaccination , SARS-CoV-2
2.
Environmental Research Letters ; 17(2):13, 2022.
Article in English | Web of Science | ID: covidwho-1656006

ABSTRACT

A second wave of coronavirus disease 2019 (COVID-19) infections emerged in Beijing in summer 2020, which provided an opportunity to explore the response of air pollution to reduced human activity. Proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) coupled with positive matrix factorization (PMF) source apportionment were applied to evaluate the pollution pattern and capture the detailed dynamic emission characteristics of volatile organic compounds (VOCs) during the representative period, with the occurrence of O-3 pollution episodes and the Beijing resurgence of COVID-19. The level of anthropogenic VOC was lower than during the same period in previous years due to the pandemic and emission reduction measures. More than two thirds of the days during the observation period were identified as high-O-3 days and VOCs exhibited higher mixing ratios and faster consumption rates in the daytime on high-O-3 days. The identified VOC emission sources and the corresponding contributions during the whole observation period included: vehicle + fuel (12.41 +/- 9.43%), industrial process (9.40 +/- 8.65%), solvent usage (19.58 +/- 13.46%), biogenic (6.03 +/- 5.40%), background + long-lived (5.62 +/- 11.37%), and two groups of oxygenated VOC (OVOC) factors (primary emission and secondary formation, 26.14 +/- 15.20% and 20.84 +/- 14.0%, respectively). Refined dynamic source apportionment results show that the 'stay at home' tendency led to decreased emission (-34.47 +/- 1.90%) and a weakened morning peak of vehicle + fuel during the Beijing resurgence. However, a growing emission of primary OVOCs (+51.10 +/- 8.28%) with similar diurnal variation was observed in the new outbreak and afterwards, which might be related to the enhanced usage of products intended to clean and disinfect. The present study illustrated that more stringent VOC reduction measures towards pandemic products should be carried out to achieve the balanced emission abatement of NO (x) and VOC when adhering to regular epidemic prevention and control measures.

SELECTION OF CITATIONS
SEARCH DETAIL